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Abstract We study the Hamiltonian motion of an ensemble of unconfined classical particles
driven by an external field F through a translationally-invariant, thermal array of monochro-
matic Einstein oscillators. The system does not sustain a stationary state, because the os-
cillators cannot effectively absorb the energy of high speed particles. We nonetheless show
that the system has at all positive temperatures a well-defined low-field mobility μ over
macroscopic time scales of order exp(c/F ), during which it finds itself in a metastable sta-
tionary state. The mobility is independent of F at low fields, and related to the zero-field
diffusion constant D through the Einstein relation. The system therefore exhibits normal
transport even though the bath obviously has a discrete frequency spectrum (it is simply
monochromatic) and is therefore highly non-Ohmic. Such features are usually associated
with anomalous transport properties.
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1 Introduction

The study of classical and quantum dynamical systems of a few degrees of freedom coupled
to an environment containing many continues to attract considerable attention for various
reasons. First of all, such studies shed light on fundamental issues of non-equilibrium sta-
tistical mechanics, such as return to equilibrium, the emergence of irreversibility and the
existence of stationary non-equilibrium states. More generally, they arise in the rigorous
derivation of macroscopic transport laws (such as Ohm’s law and Fourier’s law) and of
reduced equations of motion (e.g., Langevin equations and master equations) from a mi-
croscopic, Hamiltonian description of the dynamics. The explicit computation of transport
coefficients such as the diffusion constant or the mobility from first principles is another
motivation of such studies, particularly in solid state physics. It is this problem that interests
us here.

The case in which the environmental variables to which the particle couples are vibra-
tional degrees of freedom is of obvious interest to many fields of physics and is the most
amenable to both analytical and numerical studies. The model Hamiltonian we will study in
this paper was introduced in [25] and can be written

HF = 1

2
p2 − Fq +

∑

m

1

2

(
p2

m + ω2q2
m

) + α
∑

m

qmρ (q − ma) . (1)

Here q and p are the particle position and momentum and (qm,pm) are the position and
momentum of an oscillator of frequency ω located at xm = ma with which the particle
interacts provided |q − ma| < σ ; indeed, ρ vanishes when |q − ma| ≥ σ and equals unity
otherwise (we take a − 2σ ≡ L > 0). Here F ≥ 0 is a driving field and we are interested
in computing the low field mobility of the particle as a function of the temperature of the
oscillator bath.

Our motivation for studying this particular model is twofold. On the one hand, the model
obviously resembles those describing electron-phonon interactions in solids [17, 26], an
analogy that is further worked out in [11]. Alternatively it can be viewed as describing
the motion of a particle in an inelastic one-dimensional Lorentz gas. Recall that in the usual
Lorentz gas, a popular model for the study of transport properties, a particle moves on a two-
dimensional plane on which circular hard scatterers are randomly or periodically placed. In
order to describe the interaction with a thermal environment, the scatterers can be allowed to
rotate, as in [13, 20, 21], yielding a model similar to ours but with the environment described
through rotational degrees of freedom rather than vibrational ones. Alternatively, the scatter-
ers can be kept fixed, as in [6, 7], while the environmental interaction is phenomenologically
described through the use of a Gaussian thermostat; in the latter situation only the particle
degrees of freedom remain dynamical and the system is no longer Hamiltonian. Our model
can be viewed as a one-dimensional Hamiltonian version of such models. Unlike previously
studied two-dimensional transport models, however, the present model is not homogeneous
in energy; as a result it displays a wide range of microscopic behavior that varies with the
temperature of the system.

The main conclusion of the paper regarding the present model is that, provided the
driving field F is low enough, the particle distribution quickly acquires a drift velocity vF

proportional to the driving field F which it then maintains over times that are exponentially
long in F−1. This current is metastable, however, due to a runaway phenomenon that arises
because oscillator lattices, in general, do not efficiently slow down very fast particles (see
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Sect. 5). Thus, this system does not approach a stationary non-equilibrium state. We nev-
ertheless show that the associated mobility is well-defined and related by the fluctuation-
dissipation theorem to the diffusion constant D and the inverse temperature β = 1/kT

through Einstein’s relation μ = βD. Thus, in this simple fully Hamiltonian model, the par-
ticle exhibits normal transport behavior obeying Ohm’s law at low fields.

These conclusions will be surprising to some, since previous studies of similar models
seem to indicate rather strongly that coupling to a monochromatic bath would be expected
to lead to anomalous particle transport, such as superdiffusive behavior in the absence of a
driving field F and non-linear response of the (metastable) current at low fields. To support
these claims we conclude this introduction with a short overview of the relevant literature.
There is a considerable body of work on a variety of models in which a particle of mo-
mentum p and position q couples linearly to the displacements or momenta of a heat bath
of oscillators. A very general class of such models was proposed in [27]. To describe the
results in the literature relevant to our work here it will be sufficient to consider a specific
subclass of models described by the following Hamiltonian [2]:

H(q,p;X) = 1

2
p2 + V (q) + 1

2

∫

D

∫

B

(
p(x, ξ)2 + ω(ξ)2q(x, ξ)2

)
σ1(x)σ2(ξ)dxdξ

+
∫

D

∫

B

ρ(x − q)c(ω(ξ))q(x, ξ)σ1(x)σ2(ξ)dxdξ. (2)

Here X = (q(x, ξ),p(x, ξ))x∈D⊂R,ξ∈B⊂Rd where q(x, ξ), p(x, ξ) are the displacement and
momentum of an oscillator of frequency ω(ξ), which should be thought of as finding itself
at the point x ∈ D. The parameter ξ is to be thought of solely as an index for the oscillators.
As a result, the collection of oscillators (q(x, ξ),p(x, ξ))ξ∈B⊂Rd , x being fixed, represent
a bath of vibrational degrees of freedom of the medium at the point x ∈ D. Furthermore
σ1(x)dx and σ2(ξ)dξ are measures (on D and B respectively) and ρ(x), c(ω(ξ)) positive
functions determining the coupling of the oscillators to the particle. Note that, since neither
σ2 nor c depend on x, the oscillator baths have the same characteristics at all points x ∈ D.
We will choose for ρ a compactly supported positive function centered at the origin. The
Hamiltonian (1) is of the above type, with

σ1(x) =
∑

m

δ(x − ma), σ2(ξ) = δ(ξ − ω),

and ω(ξ) = ω.
Previously studied models with Hamiltonians as in (2) are of two types. Models with a

continuous distribution of oscillators uniformly throughout all of space are studied in [1, 2];
in that case σ1(x) = 1 and D = R. Alternatively, in [8, 9], the oscillators are located at a
countable set of points D = {xm | m ∈ Z} chosen randomly and homogeneously throughout
space so that

σ1(x) =
∑

m∈Z

δ(x − xm).

To discuss the results obtained in those previous studies we introduce the coupling
weighted spectral density of the system, defined as

J (ω) = π

2

c(ω)2

ω
n(ω),
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where the spectral density n(ω) is defined via

N(ω) =
∫

ω(ξ)≤ω

σ2(ξ)dξ =
∫ ω

0
n(ω′)dω′.

In [1, 2, 8, 9, 23], the distribution of frequencies is supposed to be continuous and J (ω) ∼ ωs

as ω → 0, for some s > 0. It is then argued in [1, 8, 9, 23] that normal transport properties are
obtained in such models only if s = 1. In particular, these authors argue that when V (q) = 0,
particle motion is diffusive provided s = 1, whereas anomalous diffusion occurs otherwise.
Similar results are obtained rigorously in [2] where it is proven that in the fully translation-
ally invariant models considered (namely σ1(x) = 1) a particle moving at constant speed v

through an oscillator bath at zero temperature experiences a friction force proportional to
vs at low v: this again indicates that a finite mobility will be obtained only if s = 1, a fact
rigorously proven in [2] for the model considered, at zero temperature.

Similar conclusions have been obtained in the much more numerous studies ([3–5, 12,
14, 18, 22] and references therein) dealing with a simpler but related class of models in
which the potential V (q) is chosen to be confining. Note that this prevents the particle from
making arbitrarily large excursions from equilibrium, justifying a “dipole approximation”
in the Hamiltonian (2) in which the coupling is linear in q as well. After some rewriting, the
resulting bilinearly coupled Hamiltonian takes the form

HCL(q,p,X) = p2

2
+ V (q) + 1

2

∫

B

(p(ξ)2 + ω(ξ)2q(ξ)2)σ2(ξ)dξ

+ q

∫

B

c(ω(ξ))q(ξ)σ2(ξ)dξ

and is then much simpler to analyze. In classical systems, for example, it straightforwardly
leads to a generalized Langevin equation for the particle:

q̈(t) +
∫ t

0
γ (t − s)q̇(s)ds = −∇Veff(q(t)) + f (t),

with

Veff(q) = V (q) − 1

2

[∫

B

c(ω(ξ))2

ω2(ξ)
σ2(ξ)dξ

]
q2

and where

γ (τ) =
∫

B

c(ω(ξ))2

ω2(ξ)
cos(ω(ξ)τ ) σ2(ξ)dξ = 2

π

∫ +∞

0

J (ω)

ω
cos(ωτ)dω

is the retarded friction kernel and

f (t) = −
∫

B

c(ω(ξ))

[(
q0(ξ) + c(ω)

ω2
q0)

)
cos(ω(ξ)t) + π0(ξ) sin(ω(ξ)t)

]
σ2(ξ)dξ (3)

the random force exerted by the medium on the particle, which depends on the initial condi-
tions for the particle (q(0) = q0) and for the bath variables (q0(ξ),p0(ξ)). Return to equilib-
rium for such systems was shown for general confining potentials in [18] provided s ≤ 1; the
particular case s = 1, with a harmonic potential V was treated in [5, 15]. Note furthermore
that the same model, with V (q) = 0 can also be understood as a model for a non-confined
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particle: in that case the oscillator degrees of freedom can be thought of as internal degrees
of freedom of a composite particle, rather than as environmental degrees of freedom. For
this model, it was shown in [15, 16, 24] that the particle diffuses only in the Ohmic case
s = 1 and is superdiffusive (respectively subdiffusive) when s > 1 (respectively s < 1).

In short, in all existing literature in which theoretical results are available on the behavior
of a particle coupled (linearly or not) to vibrational degrees of freedom, normal transport
properties for the particle occur only if the oscillator bath has a continuous oscillator spec-
trum with a sufficient density of low frequency modes (s = 1). Our study here shows that
while an Ohmic local bath is certainly a sufficient condition for normal transport, it is not
a necessary one. On the contrary, we show that even with a monochromatic oscillator bath
having no low frequency modes, a finite diffusion constant and well behaved low field mo-
bility can be obtained.

The paper is organized as follows. In Sect. 2 we describe our numerical results on the par-
ticle mobility and its temperature dependence. Section 3 provides an explanation of the high
temperature part of our data in terms of a random walk model motivated by the underlying
physics of the Hamiltonian dynamics. In Sect. 4 we apply linear response theory to prove an
Einstein relation for the model, valid at all temperatures, which we apply to explain the low
temperature behavior of the model. In Sect. 5 we show that no stationary state is established
in the system due to a runaway phenomenon inherent in all models of this type.

2 Mobility: Numerical Results

A simple inspection of the equations of motion shows that, under the dynamics generated by
the Hamiltonian (1), the particle undergoes at all times a constant acceleration F . Its motion
is decoupled from the motion of the oscillators, except at those instants of time when it
reaches the edge of one of the interaction regions, in other words when |q(t) − ma| = σ

for some m ∈ Z. At those times, it encounters a potential energy step � of magnitude |αqm|
and it therefore either turns back or proceeds with a change in momentum that is simply
determined by energy conservation. If the kinetic energy of the particle at the moment it
arrives at the edge of the interaction region is greater than the potential discontinuity, it
passes into the next region with a new kinetic energy reduced or increased by the potential
step that it traverses in doing so. Otherwise it undergoes an elastic reflection. The oscillator
at xm = ma, on the other hand, oscillates about the displaced equilibrium qm∗ = −α/ω2 at
those times t for which |q(t) − ma| < σ , and about the unperturbed equilibrium qm = 0
otherwise.

These features allow for an event-driven numerical implementation of the dynamics,
without the need for numerical integration of a non-linear differential equation. As a re-
sult, we have been able to run simulations over very long times (of the order of 106–107

oscillator periods), computing average displacements or mean square displacements for the
particle, with an ensemble of initial conditions for the particle-oscillator system drawn from
the (field-free) Boltzmann distribution. To obtain satisfactory statistics, we ran between 103

and 105 trajectories for each set of parameters considered.
In this paper we are concerned both with the high and the low temperature regime. To

understand what this means, note that there are two mechanical energy scales associated
with this model. The first one is the binding energy −EB = −α2/2ω2, which is the classical
ground state energy of the system, obtained when the particle is at rest in one interaction
region (for example the one associated with the oscillator at x = 0), with the corresponding
oscillator in its displaced equilibrium position and all other oscillators at rest (qm = 0 =
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Fig. 1 Mean square displacement of the undriven particle (F = 0) as a function of ωt for several sets of
parameters and temperatures. In both panel (a) (where c1 = 0.015, c3 = 0.5) and panel (c) (where c1 = 0.5,
c3 = 0.5) triangles indicate c2 = 0.5 and circles c2 = 5. In both panel (b) (where c1 = 0.002, c3 = 2) and
panel (d) (where c1 = 0.07, c3 = 2), diamonds indicate c2 = 0.5 and squares c2 = 5. Each curve is an average
of 103–105 trajectories. Straight lines are linear fits and c1, c2, c3 are defined in (4)–(5)

pm, m 
= 0). The other one is the kinetic energy E0 = σ 2ω2 of a particle that crosses the
interaction region of length 2σ in one oscillator period. Along with the thermal energy
kT = 1/β , this allows the introduction of two energy related dimensionless parameters,
which we denote by

c1 ≡ βEB and c2 ≡ EB/E0. (4)

The model also has two length scales L = a − 2σ and σ , leading to a third dimensionless
parameter

c3 ≡ 2σ/L. (5)

By high temperatures we will mean the regime c1 � 1, βE0 = c1/c2 � 1, for which the
average thermal energy of the particle is (much) higher than both the binding energy EB and
E0. In the low temperature regime, these inequalities are reversed. As we will show below,
the temperature dependence of the mobility is in this model qualitatively different in these
two different regimes, due to the qualitatively different nature of the microscopic dynamics.

In Fig. 1 plots are seen of the numerically computed mean square displacements of the
particle for various parameter values, in absence of a driving field. As already observed in
[25], the motion is diffusive.

In Fig. 2 we present plots of numerically calculated values of the averaged particle dis-
placement 〈q(t)〉 in units of a, in the presence of a driving field for several systems and
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Fig. 2 Mean particle
displacement as a function of ωt

for several sets of parameters,
temperatures, and forces
(F0 = aω2). In both panel (a)
(where c1 = 0.015, c3 = 0.5) and
panel (c) (where c1 = 0.5,
c3 = 0.5) triangles indicate
c2 = 0.5 and circles c2 = 5. In
both panel (b) (where
c1 = 0.002, c3 = 2) and panel (d)
(where c1 = 0.07, c3 = 2),
diamonds indicate c2 = 0.5 and
squares c2 = 5. Each curve is an
average of 103–105 trajectories.
Straight lines are linear fits

temperatures. In each case, the average is computed over initial conditions of the particle-
chain system which are drawn from its joint thermal equilibrium distribution in absence of
the driving field. One observes that 〈q(t)〉 is linear in t over macroscopically long times and
distances. Over the time scales explored, each system investigated thus attains a well-defined
drift speed vF , that is easily determined through linear regression.

As seen in Fig. 3, for fixed T and system parameters the resulting drift speeds are, for
sufficiently small fields, linear in F . This allows us to extract through linear regression,
a well-defined low field mobility which we have plotted in Fig. 4 as a function of βEB .

At low temperatures, the numerics is complicated by the following phenomenon. First,
since we compute displacements and since the system is periodic, we can start all particles
in the cell at q = 0. Then

Pint = 2σ

Le−βEB + 2σ
, Pnon = Le−βEB

Le−βEB + 2σ

are the probabilities that the particle finds itself respectively in the interaction or in the
non-interaction region of the cell [25]. Note that, obviously, the latter is exponentially less
likely as the temperature is lowered. In addition, only an exponentially small fraction of the
particles in the interaction region will ever leave the first cell under the dynamics, because
most particles will never manage to overcome the typical energy barriers they meet at the
edges. This leads to an exponential suppression of the mobility at low temperatures that
can be observed both on Figs. 4 and 5 and that will be further explained in Sect. 4. These
phenomena also affect the numerics in the following way: trapped particles will of course
not contribute to the mobility and running the corresponding trajectories would be a waste
of computer time. It would also keep one from getting good enough statistics, especially
at low temperatures, where the drift speed is low. Fortunately, using the analysis of [10], it
is possible to predict a priori from the initial conditions of the particle and the oscillator
if the particle will ever get out, and implementing this in the program allows one to avoid
running the corresponding trajectories uselessly. It follows from this analysis that particles
can remain trapped only if they start in an interaction region. Suppose therefore (q,p) are
the initial data for the particle, with 0 ≤ q ≤ 2σ so that the particle is indeed in the interaction
region, and let (q0,p0) be the initial conditions for the oscillator in the cell at the origin. The
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Fig. 3 Drift velocity vF as a
function of F . Straight lines are
linear fits. For all, c2 = 5,

v0 = aω and F0 = aω2. In the
top (bottom) panel, triangles
indicate c1 = 0.5 (0.015),
c3 = 0.5; squares indicate
c1 = 0.9 (0.03), c3 = 1; circles
indicate c1 = 0.7 (0.02), c3 = 2

Fig. 4 Numerically computed
mobilities μ/μ0

H
(see (9) for

μ0
H

) as a function of βEB over a
wide range of temperatures and
for nine different sets of model
parameters, distinguished with
different symbols. For each
parameter set, the mobility is
shown for six different
temperatures. The straight line
corresponds to η(βEB)−3/2 with
η = 0.32

total energy of this particle-oscillator system can then be written

E = ε(q) + εosc(q0,p0) − EB − 2Fσ,

where

εosc(q0,p0) = 1

2
(p2

0 + (q0 + α)2), ε(q) = 1

2
p2 − F(q − 2σ).
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Fig. 5 A log-linear plot of
μ/μ0

L
(see (12) for the definition

of μ0
L

) as a function of βEB for
the same model parameters as in
Fig. 4, emphasizing the low
temperature data. The curve
corresponds to
0.14(x1/2 + 1.5x−3/2) exp(−x)

with x = βEB . This clearly
brings out both the exponential
dependence at low temperatures
and the power law dependence at
high temperatures

Analyzing the particle-oscillator dynamics along the lines of [10] the necessary and suffi-
cient conditions guaranteeing that the particle will leave the cell at the origin at some point
in the future are

2EB − ε(q) ≥ εosc(q0,p0) >
1

4EB

(ε(q) − 2EB)2.

We now turn in the next sections to the theoretical explanation of the observed numer-
ical data described here and in particular of the temperature dependence of the computed
mobilities observed in Figs. 4 and 5.

3 High Temperature Mobility: a Biased Random Walk Model

In order to explain theoretically the high temperature part of the numerical results described
in the previous section, we will further develop the simplified random walk model of the
fully Hamiltonian dynamics at high temperature that was developed in [25] for the case
F = 0. This will provide us with a clear and simple physical picture of the motion of the
particle in this regime. First note that, at high T , the typical kinetic energy of a particle
(which is of order kT ) is much higher than the typical barriers it encounters (which are
of order

√
EBkT ). As a result, particles drawn from a thermal distribution tend to enter

most interaction regions they encounter, rather than reflecting. Now any particle with a high
velocity v will cross the interaction region in a time σ/v which is short compared to the
oscillator period and as a result it will tend to lose an energy �E = −4EBE0/v

2 to the
oscillator, as shown in [25]. At high temperatures, one has βE0 � 1 and a particle with
approximate thermal speed will satisfy the above condition since vth = β−1/2 so that σ/vth �
1/ω is equivalent to E0β � 1.

On the other hand, the same particle gains or loses an energy Fa from the field while tra-
versing the cell, depending on whether it is moving to the right or to the left. Consequently,
if the field is too large, Fa ≥ 4EBE0/v

2
th, particles with thermal speed moving to the right

will be accelerated indefinitely, so that it is not possible for a drift speed to be set up in the
system. At small fields, on the other hand

Fa � 4EBE0/v
2
th = 4βEBE0 (6)
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such particles will lose a net energy. The resulting average velocity change upon traversal of
one cell is given by

�v = �F E
1

v
= −4EBE0

v3
+ 1

|v|Fa. (7)

So, when the temperature is high and the field small, the energy loss experienced by most
particles in the thermal distribution is small, and they traverse many cells before slowing
down to a point where their kinetic energy is smaller than or comparable to the typical
barrier heights. At that point, they can be expected to receive a randomizing “kick” from
one of the oscillators. We will assume that this randomizing “kick” reinstates a thermal
distribution for the particles. One easily finds the distance �F (v) over which a particle of
high initial velocity v travels before slowing down, as well as the characteristic time τF (v)

of the slowing down process, by integrating (7):

�F (v) =
∫ 0

v

d�

dv
dv =

∫ v

0

v3

4EBE0

1

1 − Fa
4EBE0

v|v| dv,

and

τF (v) =
∫ 0

v

dt

d�

d�

dv
dv =

∫ v

0

1

v

v3

4EBE0

1

1 − Fa
4EBE0

v|v| dv.

This yields:

τF (v) = τ(v)

[
1 + 3

5

Fav2

4EBE0

v

|v|
]

, τ (v) =
∣∣v3

∣∣a
12EBE0

and

�F (v) = � (v)

[
1 + Fav2

6EBE0

v

|v|
]

, � (v) = 3

4
vτ(v).

Note that, as expected, for v > 0, one has �F (v) ≥ �F (−v): particles moving to the right are
pushed on by the field and therefore travel further before slowing down.

The result of this analysis is that at high temperatures one can view the particle motion
as a biased random walk with steps �F (v) and waiting times τF (v), with v drawn after each
randomizing kick from the Boltzmann distribution (β/2π)1/2 exp(−βv2/2). This picture
therefore leads one to predict an average drift velocity

vF = 〈�F 〉
〈τF 〉 = Fa

8EBE0

〈v6〉
〈|v|3〉 = μF, (8)

and thus a mobility

μ = 15a

16

√
π

2

√
EB

E2
0

(βEB)−3/2 ≡ μ0
H (βEB)−3/2 . (9)

The data presented in Fig. 4 show that this simple picture of the dynamics yields the correct
temperature behavior of the mobility at high temperatures as well as a reasonable estimate
of the prefactor.
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4 Low Temperature Mobility: Linear Response

It was shown in [25] that the physics underlying the low-temperature dynamics of the model
at zero field (F = 0) is of a very different nature than the one at high temperatures. It can
again be described in terms of a random walk but this time with nearest-neighbor hopping
of the particle. The analysis of [25] yields a very good prediction for the diffusion constant
and its temperature dependence at low T :

D ∼ D0
th

exp(−βEB)√
βEB

, βEB � 1 (10)

where

D0
th = a2

2σ

√
EB

2π
. (11)

In particular, it is seen from this result that the diffusion constant is thermally activated due to
the self-trapping of the particle at low temperatures briefly explained in Sect. 2 (see [25] for
details). This low temperature analysis is however more involved than the high-temperature
one and will not be further adapted to the non-zero field situation we consider here. Instead
we will present in this section an alternative derivation of the mobility of the system and
of its temperature dependence via Kubo’s linear response theory [19]. We will show this
leads to a finite time variant of the Einstein relation valid at all temperatures and for small
non-zero fields which, combined with (10), yields for the low temperature behavior of μ the
result

μ ∼ μ0
L

√
βEB exp(−βEB), μ0

L = a2

2σ

√
1

2πEB

. (12)

This is in very good agreement with the low temperature numerical data as can be seen in
Fig. 5.

Let us consider again the Hamiltonian in (1) and write it as

HF (q,p;X) = H0(q,p;X) − Fq,

where X = (qm,pm)m∈Z. We will write �F
t for the phase space flow generated by this Hamil-

tonian and use the shorthand �F
t (q,p;X) = (q(t;F),p(t;F)). In other words, q(t,F ) and

p(t;F) are the position and the momentum at time t of a particle that at time 0 had position
q and momentum p and that evolved under the dynamics generated by HF in a medium
with initial condition X. We will be interested in the thermally averaged mean velocity of
the particle at time t ,

vF (t) = 〈(q(t;F) − q)〉
t

,

which is the thermal average of its mean displacement, divided by the time t . Here and in
what follows, for any phase space function f (q,p;X), 〈f 〉 designates the thermal average
of f for the Hamiltonian H0. Also, we define the mobility by

μF (t) ≡ vF (t)

F
.

Note that this is, a priori, a time and field dependent quantity and that vF (t) and μF (t) are
precisely the quantities that we compute numerically. We are interested in their long time
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and small field behavior. Writing

�ft = 〈f ◦ �F
t 〉 − 〈f 〉,

a formal application of first order perturbation theory to our system then shows readily that
for any phase space function f ,

�ft = β

∫ t

0
dsF 〈{q,H0}f ◦ �0

t−s〉 + Ot (F
2).

Consequently, if f = q , one finds, after a change of variables in the integral

vF (t) = βF
1

t

∫ t

0
ds〈pq(s;0)〉 + Ot (F

2).

Writing furthermore

q(s;0) − q =
∫ s

0
ds ′p(s ′;0)

this can be rewritten, after changing the order of the time integrations:

vF (t) = βF

∫ t

0
ds ′

(
1 − s ′

t

)
〈pp(s ′;0)〉 + Ot (F

2).

On the other hand, let us introduce the mean square displacement of a freely evolved particle
in thermal equilibrium

D(t) := 〈(q(t;0) − q)2〉
2t

.

This can be rewritten in the usual way as

D(t) =
∫ t

0

(
1 − s

t

)
〈pp(s)〉ds.

Hence, we immediately obtain the following finite time version of the Einstein relation:

μF (t) = βD(t) + Ot (F ), (13)

which holds for all times and fields.
For fixed time t , the error term is order F , but in view of the metastability of the current

alluded to in the introduction and further explored in the next section, one cannot expect this
term to remain small uniformly in t . In other words, the limit as t goes to infinity cannot be
taken in (13). In fact, the system does not sustain a stationary state. On the other hand, the
results of [25] (see also Fig. 1) strongly indicate that

D := lim
t→+∞D(t) (14)

does exist, for all temperatures. In fact, it is clear from the numerics that the diffusive regime
is reached on a short time scale. At such times, it suffices to take F small enough to make the
error term in (13) small, leading finally to the following finite time version of the Einstein
relation,

μF (t) ∼ βD(t) ∼ βD,
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Fig. 6 Plot of μ/(βD) against
βEB for the nine systems used in
the previous figures. Six
temperatures are represented for
each system

Fig. 7 Log-log plot of
〈q(t,F )〉/F against t for several
values of F/F0, as indicated and
for the parameter values
βEB = 0.5, EB/E0 = 5,
2σ/L = 0.5. The parts of the
graphs parallel to the dashed line
correspond to behavior linear in
time (slope equal to 1). The
common y-intercept with the
vertical axis reflects their
common value for the mobility.
But for all forces, at large enough
times, the displacements increase
faster than linearly with time

linking the numerically computed diffusion constants and mobilities. Note that, since the
right hand side depends neither on t , nor on F , this means that, for such times and fields,
the same must be true for μF (t). We tested this relation numerically for nine systems, each
at six different temperatures, as shown in Fig. 6.

5 Runaway

As we have already suggested, the system studied here cannot sustain a constant drift speed
vF indefinitely. This can be observed by considering quite strong fields, as we have done in
Fig. 7, in which one clearly sees the drift speed increasing rather suddenly at some critical
time tc(F ) that depends on F . We will analyse this phenomenon below in order to obtain an
estimate for tc(F ).
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It is clear from (7) that, on average, particles with velocity

v >
√

4EBE0/Fa

gain more field energy than they dissipate, so that their mean velocity increases eventually
as v(t) ∼ v + F t. In addition, one may expect that even somewhat slower particles may,
as a result of thermal fluctuations, see their speed increase beyond

√
4EBE0/Fa and then

accelerate indefinitely. This suggests the definition

vc(F ) = γ
√

4EBE0/Fa (15)

of a critical speed vc(F ) where γ is a numerical constant of order 1. Particles with speeds
larger than vc(F ) will accelerate indefinitely, on average. Note that, obviously, this critical
speed increases when the applied force decreases, and is otherwise independent of the tem-
perature. Now, in a thermal distribution there are always particles with speeds larger than
vc(F ) and their increasing velocities will eventually dominate the average velocity, which
will no longer remain constant. Provided the field F is low enough, however, the thermal
speed vth = β−1/2 is much lower than the critical speed vc(F ). Particles destined to undergo
runaway are then rare, since they find themselves in the tail end of the distribution. Indeed,

vth � vc(F ) ⇔ Fa � βγ 2EBE0 (16)

and hence the fraction of particles in the thermal distribution that have a velocity v > vc(F ),
which is given by

ρF ≡
(

β

2π

)1/2 ∫ +∞

vc(F )

e− βv2

2 dv ∼ (
8πβγ 2EBE0/Fa

)−1/2
exp

(−2βγ 2EBE0/Fa
)

is exponentially small in F−1. Consequently, for low enough fields most particles have
speeds less than vc(F ) and to them the arguments of the previous sections apply, on av-
erage: they reach a limiting drift velocity vF .

The average velocity of the ensemble will, therefore, take the form

〈v (t)〉 ∼ vF (1 − ρF ) +
√

β

2π

∫ +∞

vc(F )

(p + F t) e−βp2/2 dp

∼ vF (1 − ρF ) + 1√
2πβ

e− 1
2 vc(F )2β + F tρF

∼ vF + (Fa)3/2 t

a

e−βγ 2 2EBE0
Fa

√
8βγ 2EBE0π

.

Consequently, for times t long enough for the slow particles to reach their final average
velocity, but short enough that the second term in this last relation is negligible, the particles
will exhibit a finite and constant current, and thus an Ohmic response. Thus, defining a
critical time tc(F ) when the fast particles start to dominate the mean particle current [i.e.,
when ρF F tc(F ) ∼ vF ], we find that

tc(F ) = vF a

√
8βγ 2EBE0π

F 3a3
e

2βγ 2EBE0
Fa (17)

which is exponentially long in F−1.
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Fig. 8 Log-log plot of the
critical breakdown times as a
function of F for the system with
parameters βEB = 0.5,
EB/E0 = 5, 2σ/L = 0.5. The
circles on this graph indicate
numerically established values of
tc(F ). The full curve is tc(F )

where γ = 0.6 and as in the
previous figures F0 = a2ω

We note that such an effect will be unobservable if the length of the sample supporting
the current is much shorter than the exponentially large distance LF = vF tc(F ) the particles
would drift during this time in an infinite sample. We have tested this runaway phenom-
enon numerically for the system with βEB = 0.5, EB/E0 = 5, 2σ/L = 0.5. In Fig. 7 one
observes for this system the numerically computed value of 〈q(t)〉/F for five values of the
force F/F0 between 1 × 10−3 and 2.5 × 10−3. One observes that the displacement grows
faster than linearly beyond a breakdown time, indicated with vertical arrows on the figure.
This breakdown time is of the order 103ω−1–104ω−1 for the three largest forces used and
is seen to increase with decreasing force. The numerically determined values of this break-
down time are plotted against the force F/F0 in Fig. 8. One notes that the breakdown time
increases very fast with decreasing fields, in a manner qualitatively compatible with the ex-
ponential law derived above. Indeed, the full line in Fig. 8 corresponds to tc(F ) in (17) with
γ = 0.6. This is compatible also with the following observation: for much lower forces,
of the order of 10−4F0–10−5F0, the mean displacement of the particle increases linearly in
time for the same system as seen in the circular data points of panel (c) in Fig. 2 for times up
to t = 107ω−1. This strongly indicates that for those very small forces, the breakdown time
will be considerably larger than 107ω−1.

The previous considerations make clear what the difficulties and practical limits are of the
numerical computations on this model, specifically at high temperatures. Indeed, because of
the existence of the breakdown time, we have to use very small external forces to study the
mobility (see (16)). But then the drift will be small and so the motion is diffusion-dominated
for quite long times. Consequently, to observe the drift, one has to run many trajectories for
long times in order to obtain sufficiently good statistics.

The analysis of the runaway phenomenon allows for a closer study of the long time and
low field limit of (13). First, since this is a first order formula in F , at fixed t , and in view of
(14), it is clear that

μ := lim
t→+∞ lim

F→0
μF (t) = βD

exists, with the two limits taken in that order. Due to the runaway phenomenon exchanging
the limits is not possible: one cannot expect the limit as t → +∞ of the left-hand side of
(13) to exist, for any fixed value of F , however small. In other words, this model does not
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sustain a stationary state. Nevertheless, our analysis also shows that the following precise
mathematical statement can be expected to be true for this model:

μF (t) ≡ vF (t)

F
= βD + O(F ) + ε

(
1

t

)

where the error term in F is uniformly small for all times in the range

μ � t � tc(F ).

In other words, the following limit should exist:

μ = lim
F→0,t→+∞
μ�t�tc(F )

μF (t) = βD.

6 Conclusion

In conclusion, we have shown in this paper that an array of monochromatic oscillators at
a positive temperature can serve as an effective heat bath for a particle driven through the
lattice under the influence of an external driving field F , inducing for the particle normal
transport properties over very long times and distances and this in spite of the fact that a
truly stationary state cannot be sustained by the system.

To end, we point out that the situation here is therefore different from the one proven to
hold for the Lorentz gas with a Gaussian thermostat [6, 7]. In that case a stationary state
is shown to exist and the limits in (13) can be exchanged. But there, friction is provided
by a Gaussian thermostat and the model is therefore not fully Hamiltonian, as pointed out
before. On the other hand, in the Lorentz gas with rotating scatterers [13, 20, 21], the Ein-
stein relation has been checked numerically to hold; in this system the dynamics preserves
phase space volume and total energy, even if it is not quite Hamiltonian. Finally, in [11] we
have argued that replacing the kinetic energy p2/2 of the particle by a cosine band Hamil-
tonian 2V (cosp − 1) will suppress the runaway phenomenon, so that in that case as well a
stationary state will exist.
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